5 月 25 - 27 日,在杭州,上千名志愿者、出品人完成了一場為年青人舉辦的大會。按照發(fā)起人阿里巴巴技術(shù)委員會主席王堅的說法,2050 是一個年份,不太近,充滿想象,也不太遠(yuǎn),我們都能活著看到。
在第一次聽到「讓世界離年青人更近,讓年青人離世界更近」這樣的辦會理念時,我們想起機器之心用前沿科技內(nèi)容聚合的全球 AI 青年,從在象牙塔里研究技術(shù)到畢業(yè)后面臨創(chuàng)業(yè)、擇業(yè)的選項,他們不僅應(yīng)該關(guān)心技術(shù)走向,也需要了解因為這些技術(shù)的創(chuàng)新促成了產(chǎn)業(yè)正在發(fā)生的商業(yè)變革。
而那些被我們報道過的 AI 創(chuàng)業(yè)公司,大多恰好處于成長周期的少年或是青年階段,如何生存和發(fā)展也同樣是他們心頭大事。
在 2050 大會上,機器之心發(fā)起了一場以《AI 技術(shù)公司的活法和前景是什么》為主題的論壇,云從科技、體素科技、深瞐科技、聲智科技、一知智能和 Udacity 分別談了談 AI 技術(shù)如何才能「落地為安」。以下為第一支演講視頻——體素科技創(chuàng)始人丁曉偉《AI技術(shù)如何推開傳統(tǒng)醫(yī)療市場的大門》:
要點速覽:
醫(yī)療領(lǐng)域以經(jīng)驗積累為基礎(chǔ)的診斷方式與AI算法模型訓(xùn)練過程的機理非常相似。此外,醫(yī)療數(shù)據(jù)爆炸與醫(yī)療人才緊張現(xiàn)狀,讓用AI去賦能一些現(xiàn)有的臨床工作流程變得非常有必要。
心臟病與肺癌等疾病的診斷流程可以做成一個全自動的量化分析的過程,診療時間大大縮短,期間醫(yī)生的主觀程度,包括勞累,疲勞,經(jīng)驗不足這些問題就統(tǒng)統(tǒng)得到非常好的解決。
除了診斷流程,AI醫(yī)療解決方案也能解決互聯(lián)網(wǎng)問診平臺與家庭疾病預(yù)防面臨的各種問題。
丁曉偉:
大家早上好,我是丁曉偉,是體素科技創(chuàng)始人,也是 UCLA 的研究助理教授。體素科技作為醫(yī)療 AI 的創(chuàng)業(yè)公司,代表 AI 公司講一下怎么把醫(yī)療傳統(tǒng)市場用 AI 打開。
其實這個問題大家都比較好奇,或者在座的醫(yī)療界之外的人士,包括醫(yī)生,我們合作的醫(yī)生也經(jīng)常問我:「你們做 AI 的人到底怎么把這個用在醫(yī)療領(lǐng)域?」
大家一直在新聞上看 AI 醫(yī)療,但是都不知道長什么樣子,怎么用。我今天就去講一些更加具體的案例。給大家介紹一下這個領(lǐng)域是怎么回事。
我們公司一開始創(chuàng)立在中美兩地。在美國的地點是洛杉磯和鳳凰城。在國內(nèi),北京和上海是我們主要團(tuán)隊的所在地。
AI 醫(yī)療是一個研究大于工業(yè)界的領(lǐng)域。之前這個領(lǐng)域主要是處于研究的階段,我們公司的創(chuàng)始人也都是具有學(xué)術(shù)背景的,除了我之外還有我 UCLA 的博士導(dǎo)師 Demetri Terzopoulos,他是英國皇家科學(xué)院和加拿大科學(xué)院的院士。
你可以查一下,牛頓、居里夫人等等,課本上有的人都是牛頓皇家科學(xué)院的人。他在醫(yī)療方面不僅做過基礎(chǔ)的工作,還把 AI 技術(shù)用到電影特效上面,所以在 2006 年被授予過一次奧斯卡獎,這是一位具有傳奇經(jīng)歷的教授。
我的另外一個合伙人也是 Demetri 的學(xué)生,梁建明教授,他是梅奧醫(yī)學(xué)中心首批入駐教授之一,以前在西門子工作過六年,為西門子的機器學(xué)習(xí)和醫(yī)療影像分析產(chǎn)品做過貢獻(xiàn),帶領(lǐng)團(tuán)隊做過十幾款產(chǎn)品的研發(fā)。
剛才介紹了我們獲得了世界上比較知名的資本的認(rèn)可聯(lián)——聯(lián)創(chuàng),紅杉和騰訊。
大家比較清楚,利用 AI 做的人臉檢測,在場景視覺,以及自動駕駛上面開始有一些成功的應(yīng)用了,但它為什么可以用到醫(yī)療上面?
這個不能簡單推論,因為醫(yī)療是一個比較獨特的行業(yè),首先它適合做在醫(yī)療上是因為機器學(xué)習(xí)本來就是通過數(shù)據(jù)驅(qū)動讓它學(xué)習(xí)數(shù)據(jù)。
它不像數(shù)學(xué)或者是物理學(xué)一樣的,很多東西是發(fā)現(xiàn)了真理,大家用一些公式可以推導(dǎo)出不少實際生活中的現(xiàn)象。
人類對咱們自己生命的認(rèn)知還是比較淺薄的,有很多東西就算在臨床中已經(jīng)是常用的處理方法,我們其實是不知道背后機理的,很多還是以病例的積累為主的。
其實這個特性還是蠻適合做技術(shù)驅(qū)動和數(shù)據(jù)學(xué)習(xí)的技術(shù)方法論,有的時候需要探究機理,但有的時候是不需要看背后機理的。
另外就是需求。
醫(yī)療診斷,是一個病人在醫(yī)院里面的開始,它的準(zhǔn)確性其實直接關(guān)系到病人的愈后(出院結(jié)果),這個過程對醫(yī)生的挑戰(zhàn)蠻大的。
人的身體上有超過 12000 多種診斷的可能性,如果把它標(biāo)準(zhǔn)化,就是 WHO-IC-10 的一個編碼系統(tǒng),它編輯了所有可能的診斷。
在一個器官上的一個病種,就有上百種的亞型,亞型間的區(qū)別是非常細(xì)微的,這么細(xì)微對人類的經(jīng)驗和挑戰(zhàn)都是比較大的。甚至在美國這種醫(yī)生并不是非常忙碌的環(huán)境下,他們也會出現(xiàn)有 12000 次以上誤診的存在。
另外就是工作量的問題了,這在國內(nèi)尤為突出。就是所謂醫(yī)療數(shù)據(jù)的爆炸。
從 2012 年的 500PB 到 2020 年的 25000PB(一個 PB 是 1024TB),人來消化這么大的信息量,是非常非常困難的。所以這 25000PB 里面的 99% 是需要計算機和 AI 消化的。
這個數(shù)據(jù)增長也是好事,代表醫(yī)療器械更新?lián)Q代,信息量越來越大了,還有就是人們對健康的關(guān)注也越來越多,檢查的頻次或者檢查的種類也是越來越多。
在這樣的一個背景之下。我們提供的一個解決方案就是,用 AI 去賦能一些現(xiàn)有的臨床工作流程、醫(yī)生還是在扮演整個醫(yī)療診斷的主體。但因為工作量大,我們把 AI 嵌進(jìn)工作流程里,稍做修飾就會讓流程變得非常科學(xué)、客觀。
一個病人做 CT 掃描,核磁共振,他躺在機器里面,影像會自動上傳到醫(yī)院的云服務(wù)器上,通過 AI 進(jìn)行分析,在沒有人工干預(yù)的情況下,出一份就像醫(yī)生撰寫的、具有自然語言的報告。
比如說「左肺下有一個什么大小的結(jié)節(jié),邊緣是不是光滑,惡化的可能性有多高」等等,就是這樣一種「自然語言」的呈現(xiàn)方式。但最后還是需要醫(yī)生簽字審核。
這是 AI 用在影像診斷上面的一個典型的工作流。
AI 也可以用在醫(yī)療的其他很多領(lǐng)域,比如說藥物的研發(fā),醫(yī)院院內(nèi)的流程管理,減少一些不必要的失誤,優(yōu)化效率,這個都會有,但這不是今天討論的范疇。
診斷市場里的數(shù)字很多,大家只看兩三個數(shù)字就可以了。
中國每年有 38 億次的醫(yī)療影像掃描,核磁、CT、X 光,超聲等等,美國是 4.3 億人次,這兩個數(shù)字還是 2014 年的。其實最近幾年國內(nèi)增長尤其快。
另外就是去醫(yī)院就醫(yī)的習(xí)慣也慢慢受互聯(lián)網(wǎng)的影響。
很多人習(xí)慣在網(wǎng)上或者遠(yuǎn)程進(jìn)行看病,這樣的增量市場基本來自城鄉(xiāng)居民或者使用互聯(lián)網(wǎng)的用戶。當(dāng)然這部分人也需要自身有病或者身上有不舒服的感覺,才會這樣用。
現(xiàn)在這大約是個 2000 萬人的市場,可能在未來的五年中增長到兩到三億規(guī)模。
互聯(lián)網(wǎng)輕型的診前環(huán)節(jié)問診也是一個爆發(fā)的市場。所以我還是用一些具象案例講一下這個東西(AI 醫(yī)療解決方案)在醫(yī)院里面,在互聯(lián)網(wǎng)問診,或者在家庭里面,到底都長什么樣子,我講一下醫(yī)生怎么用這個。
這是我們團(tuán)隊創(chuàng)業(yè)前,在美國參與研究的項目,這個項目作為一個比較成功的已經(jīng)用于美國預(yù)防心臟病類的診斷系統(tǒng),已經(jīng)有一些時間了,它比較成熟。
這個圖非常好看,它是心臟的核醫(yī)學(xué),用來評估得了冠心病的人是否缺血。是不是值得做支架,值得做搭橋手術(shù)。
之前是影像拍出來,醫(yī)生拿著看,不同醫(yī)生之間經(jīng)常有不一樣的見解;同一個醫(yī)生兩次看結(jié)果也可能不一樣。因為影像有很多噪聲,有很多不確定的現(xiàn)象,而且還要耗費時間。
我們現(xiàn)在就想解決這個問題,就把心臟病的分析做成一個全自動的量化的過程。
按美國協(xié)會的標(biāo)準(zhǔn),我們用系統(tǒng)去跟蹤心臟的左心室跳動,把左心室代謝的分?jǐn)?shù)用一些量化的指標(biāo)打出分來,去對比心臟在受壓情況以及平靜狀態(tài)之下兩個分?jǐn)?shù)的區(qū)別,這樣就可以客觀穩(wěn)定的做出一模一樣的結(jié)果,因此整個診療就變成幾秒鐘的時間。這個期間醫(yī)生的主觀程度,包括勞累,疲勞,經(jīng)驗不足這些問題就統(tǒng)統(tǒng)得到非常好的解決。
后來我們就拿這個產(chǎn)品跟很多國際大廠商,譬如飛利浦、西門子、東芝等公司合作,把這個產(chǎn)品就變成他們硬件里面的一個軟件。
這個東西的影響力,大眾是感覺不到的,但是對醫(yī)生來說其工作流程效率得到非常大的提升。
這個是我們創(chuàng)業(yè)之后做的。
剛才心臟是比較特殊的,相對問題比較單純一點。
但像我們醫(yī)院里面最最常見的流程,譬如掃一個胸部的 CT,不管你是咳嗽、肺炎、胸痛,或者不知道什么情況,或者心臟有問題,都會掃這個影像。因此其工作量和壓力也是最大的。
我們做的跟剛才講的模式一樣,只是這個問題的復(fù)雜程度大很多。CT 有很多細(xì)節(jié),可以看到身體里各種各樣的組織——心臟、器官、血管、脂肪都能看到。
我們也是用自然語言的報告來呈現(xiàn)這個 CT 中的可見異常,把 20 到 30 分鐘的工作量,縮短到 5 到 10 分鐘,醫(yī)生節(jié)省了打報告的時間,只需要修改上面的內(nèi)容就可以了。
此外,在日常工作中沒有時間量化的東西也可以自動被量化出來,這樣隨訪病人的時候就會非常客觀。譬如腫瘤六個月長出來 30%,以前都是用人眼去估計的。
肺癌,是讓人產(chǎn)生恐懼最大的疾病,我們也結(jié)合醫(yī)療影像這種宏觀信息(就是病灶長什么樣),以及一個微觀信息(就是從血液里面找到腫瘤殘留的 DNA 片段),將兩種宏觀微觀信息結(jié)合起來,更好地進(jìn)行二次確診。
這樣就知道一個早期的肺癌病人,到底是應(yīng)該開刀,還是做進(jìn)一步觀察。就是用一些更先進(jìn)的技術(shù)手段,為一些病情非常模棱兩可的病人提供更多有信心的診斷。
再就是冠心病,人類第一大殺手。在國內(nèi),如果家里老人感到胸痛、胸悶,到了醫(yī)院第一步就是做這個檢查——心臟冠脈造影 CT,通過這個 CT 可以看到心臟三個冠脈的狹窄程度,以及造成狹窄的原因。
利用 AI,他們就能夠把本來只有通過插導(dǎo)管才能夠看到的結(jié)果(比如說冠脈的斑塊,成分是什么樣的,體積,實際的狹窄情況是怎么樣的),通過無創(chuàng)檢查(CT 是無創(chuàng)的,不用放東西到身體里面),可以預(yù)測和推理有創(chuàng)檢查可以得到的結(jié)論。
這對患者風(fēng)險的控制,外加用藥場景整個開銷的控制,都是非常有益處的。
心臟病致死的原因,一般是急性心臟病發(fā)作。大家也想知道自己多少年內(nèi)有可能發(fā)這個病,這個醫(yī)生一般也說不準(zhǔn)。如果一個醫(yī)院發(fā)現(xiàn)一個病人在未來五年內(nèi)有可能發(fā)心梗的話,是不會輕易讓這個病人回家的,會做一些預(yù)防措施。
人很難通過這個病人所有的信息做出相對準(zhǔn)確的預(yù)測。因為診斷考慮的東西太多了,預(yù)測太難了。
而我們其實就是在一個病人心臟的影像上對心臟的脂肪,血管里面幾個狹窄的斑塊等等進(jìn)行量化,獲得量化指標(biāo),再結(jié)合病人的臨床信息,譬如生化指標(biāo)、血液指標(biāo),病史、家族史等,預(yù)測這個人在未來五年的哪個時間段發(fā)心梗的概率最大。
我們倒不是去猜,結(jié)果肯定是通過實在的數(shù)據(jù)推理出來的,在國內(nèi)有 20 家醫(yī)院,提供 5 萬位病人隨訪的檢查結(jié)果。這些數(shù)據(jù)都是病人在進(jìn)醫(yī)院的 5 年間,醫(yī)院不停的給他打電話,問他有沒有發(fā)生心臟的問題。就是通過這樣的方式,來預(yù)測還沒有經(jīng)歷過這五年的人的發(fā)病風(fēng)險。
我們可以從一個影像里面把造成胸痛的三個主要原因找出來,冠心病,肺動脈栓塞,主動脈夾層,醫(yī)院是分開來看的,但有了我們的解決方案,是有望通過一次檢查就能看出來。這樣病人受到的輻射是三分之一,花銷也是三分之一。
再有就是一些大面積使用的體檢類的產(chǎn)品。譬如超聲,這個是沒有輻射的,所以它在體檢中最常用,做多少次對你身體都沒有影響;還有胸片,快速廉價,輻射又低,常規(guī)一年做幾次體檢的話,胸片肯定會拍。
比如說國內(nèi)一些大的體檢連鎖機構(gòu),每年胸片數(shù)量是用億來算的,你想想會有多少醫(yī)生來看,這個壓力非常非常大,我們至少可以用 AI 給他做病人的分流,或者是優(yōu)先級的排序,甚至是初步的診斷報告,這都是有很大好處的。
這個東西效率提上去價格降下來的時候,以前沒有條件做這些檢查的人,現(xiàn)在也會有條件了。
剛剛講的都是放射影像,就是一些大的設(shè)備拍出來的影像,其實還有很多是放射科之外用的,譬如眼科,皮膚科等一些使用光學(xué)影像的科室。
眼病,跟內(nèi)分泌,以及人是否會致盲都有非常大的關(guān)系,我們對眼底照相,對于所有可見的疾病病灶類型,都是能看到的。
以上都是在醫(yī)院里面使用的系統(tǒng),跟我們每個人是接觸不多的,但是你的醫(yī)生會接觸到。
看行業(yè)的話,能適應(yīng)上面這些產(chǎn)品的商業(yè)模式都是圖里的藍(lán)色標(biāo)注(下圖)。
比如說在大醫(yī)院小醫(yī)院,第三方醫(yī)院,公立醫(yī)院等等,它們會作為輔助型醫(yī)療設(shè)備進(jìn)到醫(yī)院。
還有一些篩查的項目,國家研究的項目,或者做藥物臨床實驗時篩選一些合適病人,這些用人去篩,肯定沒有用機器篩來的高效。
其次,之前有對病人做過一項統(tǒng)計,病人一般不會相信一個醫(yī)生的結(jié)論,他一般會看完這個醫(yī)院再找另外幾個醫(yī)生,對比一下看看診療意見是不是一致,這個對病人來講也是蠻好的選擇。
另外,這個系統(tǒng)要利用大型設(shè)備拍攝出來的數(shù)據(jù),這個設(shè)備本身就可以直接增加模塊,我認(rèn)為下一代儀器都會帶這個模塊,合作方集成這樣的模塊是整個行業(yè)設(shè)備未來的趨勢。
在家里面,對于小孩一些發(fā)育型的疾病,譬如小孩視力障礙,父母可以利用 AI 解決方案對小孩做一些行為分析。
譬如給自己的孩子在家里錄一段視頻,軟件能夠跟蹤其頭部,肢體,眼球的運動,可以從這個行為中分析它有沒有產(chǎn)生這個疾病的先兆。
這個病早期是非常容易干預(yù)的,做一些工作就很容易恢復(fù);但如果發(fā)病一年以上再做手術(shù),做很多訓(xùn)練都不一定見效,就變成殘疾兒童了。
很多小孩,一般是眼睛看不見了才覺得有近視,在這之前父母可以通過眼部的外形變化,更早的察覺到這種病情。
國內(nèi)有六千萬視力障礙患者,從 6 歲到 15 歲、18 歲,這個基數(shù)非常大。
再就是在線的網(wǎng)上問診平臺,譬如「好大夫」等等。這些問診平臺現(xiàn)在有一些運營的訴求。
如病人的吞吐量是很難呈現(xiàn)爆發(fā)性增長的,因為在線醫(yī)生數(shù)量是飽和的,他們不可能一年招二倍三倍的醫(yī)生,那全國的醫(yī)生就被挖的差不多了。
如果他們通過 AI 做一些簡單病問診的分流,做一些初步的分析。或者把 AI 用到內(nèi)部運營管理方面,把一些病人拍的不標(biāo)準(zhǔn)的信息,進(jìn)行自動標(biāo)準(zhǔn)化后再發(fā)給醫(yī)生;反過來,AI 可以幫病人找到一位最適合的醫(yī)生,達(dá)到醫(yī)生和病人的雙重滿意。
以上這都是網(wǎng)上平臺非常大的訴求。
以皮膚為例,遠(yuǎn)程問診的入口,就已經(jīng)不是病人自己去判斷自己,點 APP,再點一個他認(rèn)為擅長的醫(yī)生,這都是非常主觀的。
你可以直接拍照,再描述一下自己的病情,系統(tǒng)會自動給你找一個最匹配的醫(yī)生。
一個看白癜風(fēng)的專家,不希望看你的粉刺,一天 50 個病人有 49 個是看粉刺的,他是不喜歡的,對醫(yī)生來講,滿意度也是很關(guān)鍵的。
這樣的商業(yè)模式是一個對輕問診平臺入口的重塑,讓它變得更加直觀,貼近患者的使用習(xí)慣;再就是他內(nèi)部吞吐量以及服務(wù)的響應(yīng)時間的優(yōu)化,這些增長也是 AI 公司的機會。
以上就是 AI 應(yīng)用在醫(yī)療市場的一些可能性,這個狀態(tài)大家都比較關(guān)注,在一些醫(yī)院里面我們也在進(jìn)行實驗性試點。
在美國和國內(nèi)一些大的篩查組織,疾病管理中心,超過 700 個點也在用這些產(chǎn)品優(yōu)化他們的管理流程。
此外,這個行業(yè)發(fā)展還是比較早期的,大的機構(gòu)會帶領(lǐng)著一個行業(yè)的運行。作為騰訊被投資的企業(yè),騰訊也有 AI 醫(yī)療影像國家項目,他們跟我們有很多深度合作。
我們想讓診斷變得對每個人都觸手可及,不僅是我們的大城市,鄉(xiāng)村、基層群眾都應(yīng)該得到平等高效的,跟大城市一樣的治療。
我覺得「早發(fā)現(xiàn)早治療」是治療疾病最有效的辦法,而不是「病入膏肓后殊死一搏」。我們應(yīng)該把診斷和早發(fā)現(xiàn)這些環(huán)節(jié)做好。